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QSP (Quantitative & Systems Pharmacology)

Quantitative and Systems Pharmacology in the Post-genomic Era: New Peter K. Sorger (co-chair), Sandra R.B. Allerheiligen (co-chair)

Approaches to Discovering Drugs and Understanding Therapeutic
Mechanisms

Darrell R. Abernethy, Russ B. Altman, Kim L. R. Brouwer, Andrea Califano, David Z.
D'Argenio, Ravi Iyengar, William J. Jusko, Richard Lalonde, Douglas A. Lauffenburger,
Brian Shoichet, James L. Stevens, Shankar Subramaniam, Piet Van der Graaf and
Paolo Vicini

An NIH White Paper by the QSP Workshop Group — October, 2011 Rebecca Ward (editor)

“‘We require better quantitative models of
pharmacological mechanism at all scales,
starting with single targets and drugs
and scaling to vertically and horizontally integrated
multi-scale models.”

Bridging Mechanistic Models and Patient Data in Virtual Clinical Trials C COMPUTATIONAL DESIGN
Mac Gabhann Lab * ASCPT 2019.03.15 of THERAPEUTICS LAB



‘Mechanism at all scales’ moves us from

drug-centered modeling to target-centered modeling

By moving from ‘drug-first' modeling to ‘target-first’ modeling,
we can build platforms that enable simulation and comparison
of different therapies (and combinations) in a common framework.

These models can include the target’'s complex and dynamic
environment, including interaction networks.

Changing perspective to detailed mechanism of action allows us to
simulate more complex therapies and multi-step clinical protocols.

Bridging Mechanistic Models and Patient Data in Virtual Clinical Trials ~aCOMPUTATIONAL DESIGN
Mac Gabhann Lab * ASCPT 2019.03.15 \_%of THERAPEUTICS LAB




Multiscale mechanistic models combine physiology

BLOOD NONTUMOR

TUMOR

with detailed molecular and cellular biology
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Clegg and Mac Gabhann, PLoS Comp Biol 2015
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The models are built on mechanisms

(the obligatory intimidating equation slide)

Secretion from cells Sequestration in extracellular matrix
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Vascular permeability and lymphatic transport
Stefanini et al, Cancer Res 2010
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The models are built on mechanisms

(the obligatory intimidating equation slide)
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Clegg and Mac Gabhann, PLoS Comp Biol 2015
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In many cases, we have the parameters we need

to build detailed mechanistic models ...
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... and these can lead to key mechanistic insights,

such as a shuttling mechanism for bevacizumab

Tumor or Nontumor Blood
(higher VEGF levels) (lower VEGF levels)

The antibody soaks up
almost all VEGF in the blood

v

The antibody sequesters much Some antibody goes to tissue
of the VEGF in the tumor

\

Some VEGF-antibody complex
goes to blood

->

Due to a lower local VEGF
concentration, VEGF is released
from the antibody

v

VEGF concentration increases;
free antibody returns to tumor

Stefanini et al, Cancer Res 2010
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Understanding variability across the population

is crucial for predicting likelihood of treatment success

Population pharmacokinetics (PopPK) studies one element of
variability across patients. It can help to decrease variability in drug
exposure, typically by informing dosing and scheduling.

Pharmacogenomics is another source of variability; SNPs may be
biomarkers for therapeutic success (e.g. gefitinib & EGFR)

With detailed multiscale modeling of therapy mechanism of action,
we can also consider population pharmacodynamics (PopPD)
as a source of variability in efficacy from person to person.
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Gene and protein expression

can show high variability in the population ...

Expression of VEGFA (TCGA — RCC)
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... and variability can be high for

multiple components in the network
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Use patient data to build a population of hundreds of computational models

(one per patient)

Virtual Patients
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Use these virtual patients to run virtual clinical trials

(simulate population response to treatment)

Virtual Patients
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The variability in target response to treatment is high

(here, PopPD effects are isolated from PopPK)

Decrease in predicted tumor VEGF levels
following anti-VEGF treatment (renal cell carcinoma)
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( ) Bender and Mac Gabhann
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... and mechanistic models can help us identify

variability in compensatory or off-target effects too

Increase in the formation of PIGF-VEGFR1 complexes
in the tumor following anti-VEGF treatment (RCC)
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Bender and Mac Gabhann
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Multiscale mechanistic models combine physiology

with detailed molecular and cellular biology
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This enables us to simulate a wide range of interventions —
iIncluding drugs like small molecules and biologics;
but also non-drugs like gene therapy, biomaterials... even exercise.

Clegg & Mac Gabhann, Integr Biol 2018
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nytimes.com/2019/03/04/health/aids-cure-london-patient.html

Ehe New York Eimes

H.LV, Is Reported Cured in a
Second Patient, a Milestone
in the Global AIDS Epidemic

Scientists have long tried to duplicate the procedure that led to the
first long-term remission 12 years ago. With the so-called London
patient, they seem to have succeeded.




The London patient

LETTER
doi:10.1038/s41586-019-1027-4

HIV-1 remission following CCR5A32/A32 haematopoietic stem-cell

transplantation

Ravindra K Gupta, Sultan Abdul-jawad, Laura E McCoy, Hoi Ping Mok, Dimitra Peppa, Maria Salgado,

Javier Martinez-Picado, Monique Nijhuis, Annemarie M.J. Wensing, Helen Lee, Paul Grant, Eleni Nastouli, Jonathan Lambert,
Matthew Pace, Fanny Salasc, Christopher Monit, Andrew Innes, Luke Muir, Laura Waters, John Frater, Andrew ML Lever,

SG Edwards, Ian H Gabriel & Eduardo Olavarria

An HIV-1-infected adult underwent allo-HSCT for
Hodgkin’s lymphoma using cells from a CCR5A32/A32
donor. He experienced mild gut graft versus host disease.

Antiretroviral therapy was interrupted 16 months after
nature transplantation. HI'V-1 remission has been maintained
through a further 18 months.
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Hematopietic stem cell transplant (HSCT)

using modified cells from donor or self
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CD4+ & CD8+ T-cells, Macrophages, and virus

(b)
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Hosseini and Mac Gabhann, CPT:PSP 2016
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CD4+ & CD8+ T-cells, Macrophages, and virus
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CD4+ & CD8+ T-cells, Macrophages, and virus
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Bridging Mechanistic Models and Patient Data in Virtual Clinical Trials
Mac Gabhann Lab * ASCPT 2019.03.15

[~ COMPUTATIONAL DESIGN

“Yof THERAPEUTICS LAB



Data from MACS (Multicenter AIDS Cohort Study):

Viral load, CD4+ and CD8+ T cell counts
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Create virtual population to capture variability;

Validate population model against treatment data
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Treatment Data: Keppler et al. Cell Stem Cell, 2012
Simulations: Hosseini and Mac Gabhann, CPT:PSP 2016
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Hematopietic stem cell transplant (HSCT)

using modified cells from donor or self
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HSCT augmented with genetic modification

(b)

.,

Generation =

cpa+Teells \_ "/ Infection

Prolif

Prolif

E
Gen /} Infection \7{
—>( M, —>M

Prolif

l Apop \ Kill CD8+ T cells

Hosseini and Mac Gabhann, CPT:PSP 2016
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HSCT augmented with genetic modification

Augmented CD4+ T cells
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HSCT augmented with genetic modification

Augmented CD4+ T cells
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HSCT augmented with genetic modification

(results in chimerism — donor and recipient cells)

Augmented CD4+ T cells
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This multiscale mechanistic model can simulate

complex, multistep clinical trial protocols over long times

Virtual clinical trial,
patients receiving infusion of A | Viralload B Total CD4+

T . 3000 T T
10 billion autologous CD4+ T | sPE=007S roog| MSPE=0128
cells (20% CCR5-modified) 2. | T 3 o :
o I 11 el ?u’ I :
. . . %% 4 i §1500- 1 I
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o

Hosseini and Mac Gabhann, CPT:PSP 2016 Experimental data: Tebas et al. New England Journal of Medicine, 2014
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Virtual clinical trial: CCR5-HSCT therapy is predicted to be

successful at stopping HIV infection in some patients

CD4+ T Cells
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Hosseini and Mac Gabhann, CPT:PSP 2016
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Probability of cure for CCR5-HSCT therapy

depends on the level of immune donor chimerism
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Hosseini and Mac Gabhann, CPT:PSP 2016 transfected (%)
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Mechanistic models can serve as platforms
to simulate and compare therapies and combinations,
iIncluding complex multi-modal clinical protocols

Mechanistic models developed to simulate drug treatment
can be repurposed to simulate non-drug treatment,
including cell therapy and biomaterials

Population differences in ‘mechanism-of-action’ components
demonstrates a high level of variability in pharmacodynamics
that rivals or exceeds that in pharmacokinetics
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Mechanism-based modeling is not antagonistic

to data-driven approaches we've seen at this meeting

There is potential for Deep Learning and other data-driven
strategies to give mechanistic insights.

We also have other sources of mechanistic insights, including
decades of detailed & quantitative biophysical, biochemical, and
physiological experiments.

In summary.. we are not in the dark
when it comes to mechanistic models.
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Computational Design of Therapeutics

Improve understanding High-resolution PK/PD models and
of molecular mechanism simulation of tissue Personalized Medicine
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For how many people does a drug work?

bevacizumab (anti-VEGF mAb) Clinical Trials

Cancer Type Response Rate Median Overall
Survival (months)
Treatment | Control | Treatmen | Control
t

Colorectal 44.8% 34.8% 20.3 15.6
Non-small cell 35% 15% 12.3 10.3
lung cancer

Renal cell 31% 13% 23.3 21.3
carcinoma

Cervical 48% 36% 17.0 13.3
Gastric 46% 37% 12.1 10.1
Pancreatic 13% 10% 5.8 59
Breast 36.9% 21.2% 26.7 25.2
Prostate 49.4% 35.5% 22.6 21.5

Red indicates treatment has statistically
significant difference from control

Bender and Mac Gabhann, Unpublished
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Bone marrow transplant (HSCT) in HIV patients

Berlin patient
1995: Diagnosed with HIV & began cART

2007: allogeneic HSCT for AML from a donor with homozygous
CCR5A32

Since cART discontinued, the patient has been HIV-free

Boston patients
allogeneic HSCT from donors with wildtype CCR5
7 to 15 weeks after cART cessation, HIV rebounded

HSCT is not enough; the cells need anti-HIV
functionality

If they don’t have it, we can add it (gene therapy)
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|ldentify parameter values using data from

long-term HIV cohorts

MACS: Multicenter AIDS Cohort Study dataset (n = 6972)
Target patients: cART-naive HIV-infected patients with (approx.)
known date of seroconversion and date of AIDS diagnosis

— cART-naive: filtered if seroconv. date > 1996 or AIDS > 1996

— Seroconv. date: filtered if seropos. date — seroneg. date > 1 yr
« AIDS date: filtered if no AIDS date

categorized in 4 groups (n = 172)
- AIDS<3.5(n=32),3.5<AIDS<7(n=61),7<AIDS <9 (n=39),9<

AIDS (n = 40)
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Multiscale mechanistic model of immune cells & virus
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HSCT augmented with genetic modification:

multiscale mechanistic model of immune cells & virus
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Validation: prediction of results in clinical studies

Infusion of 10 Billion autologous CD4+ T cells,
of which 20% are CCR5-modified

— Patients had chronic aviremic HIV infection and were
receiving CART

— Patients had a range of CD4+ T cell counts: 546-1123
cells/uL  NE——

_ 12-week cART interruption | N
4 weeks after T cell infusion
— Monitored 36 weeks
* Plasma viremia
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* Total CD4+ T cell counts
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Basic model of HIV infection: three components can capture acute response to

treatment ...

Bone marrow
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. but not late-stage viremia;

macrophages are required to explain this

-

.

Typical course of untreated HIV infection
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Lesson 1: Where there is controversy,
quantitative models can help to identify mechanisms
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Public datasets

* Proposals submitted to all three cohorts

Bridging Mechanistic Models and Patient Data in Virtual Clinical Trials

Amsterdam Cohort public dataset (n = 329 - less than < 126,
quantized data, date info = mm/yy)

MACS public dataset (n = 6972 - 172, date info = yy)

6 categories of patients

» Seroconverters (585 patients)

» SeroPrevalents with known date of seroconversion (59 patients)
0 < Seropos_date — Seroneg_date < 7 years

* 0 < Seropos_date — Seroneg_date < 1 years (486 patients)
These patients sometimes have multiple dates for the initial AIDS
diagnosis

» Seroconv_date > 1996 (filtered)

» AIDS > 1996 or No AIDS date (filtered)
Categorized in 4 groups

« AIDS <3.5(32), 3.5 <AIDS < 7 (61), 7 <AIDS < 9 (39), 9 <AIDS (40)
1 Year resolution was not enough, we needed 6 months at least for
optimization

~=COMPUTATIONAL DESIGN
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Workflow

Virtual Population
‘ Generation ‘

Average data from untreated patients: All data from untreated patients:
4 patient populations 4 patient populations

' y

System identification

Mechanisti deli
) €chanistic modeling Build & validate Predict efficacy of

Hypothesis testing virtfu:ll\;:)optqlat;on anti-HIV therapies
v o patients

Optimization

Compare to T

clinical datasets Clinical data from
I cART-treated patients

Bridging Mechanistic Models and Patient Data in Virtual Clinical Trials aCOMPUTATIONAL DESIGN
Mac Gabhann Lab * ASCPT 2019.03.15 \_%of THERAPEUTICS LAB




CD4+ Viral load
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Parameter values across subpopulations
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Multiscale, mechanism-based modeling allows us to simulate non-drug treatments,

including engineered materials

Protein Description Result in Mice Reference
VEGF165a VEGF165a protein Poor angiogenic growth, Martino et al.

vascular leakage science 2014
“Super Affinity” VEGF engineered for Improved wound healing, M?rtinozetlaz-
VEGF increased affinity to ECM decreased leakage science 20
Covalent VEGF VEGF covalently attached to  Improved angiogenesis & Sacchietal.
w/ proteolysis fibrin matrix with tunable wound healing at 1-3 months PNAS 2014

OQT proteolytic release with low doses

Clegg & Mac Gabhann, Integr Biol 2018
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